Sr Black H

www.amaz

QUANTUM /: ETIME Energy MICRY OF PATHS AND BLACK HOLES lishers.com Marco Spaans

Classical and Quantum Mechanics

NOVA

Cosmic evolution appears to involve inflation and dark energy

A Bit of General Relativity

- Equivalence principle: Einstein's local interpretation of Mach's global principle.
- GR not invariant under local conformal transformations → singular metric fluctuations on the Planck scale: Wheeler's quantum foam of wormholes.
- The Einstein equation $G_{\mu\nu} = 8\pi G_N T_{\mu\nu}$ does not specify local and global **topology**.

Topology of Quantum Space-Time

On the **plank scale**, the universe might be multiply connected: wormholes (handles) S¹xS²; m_P, I_P, t_P

Topology of Quantum Space-Time

In topology, shapes or surfaces are considered to be equivalent if any continuous change can be continuously undone, this is called a homeomorphism.

A continuous deformation between a donut and a coffee cup.

This also means that there is no topological difference between a large and a small wormhole: same information M, Q, S.

The Equivalence Principle: consider observer **and** observed

Proposal: Identity by Mimicry

- The collective existence of observers and observed derives from one **mimicking** the other unremittingly: They can adopt each other's role, so observers and observed are always **equivalent yet distinct**.
- No entity, like a particle or even a history, has individual significance; one needs a proper example to compare to.
- This mimicry also holds for black holes...
- Under the observational act of mimicry Wheeler's quantum foam of mini wormholes is then globally induced by macroscopic black holes.

Topological induction of mini BHs because of mimicry

- Every t_P a pair of mini wormholes is induced by a BH because it Hawking evaporates and thus behaves as a wormhole in a topological sense: the entrance and exit both require a BH mimic for their 4D (historical) identity.
- Planckian wormholes evaporate in about $t_{ev} \sim t_{P}$.
- Macroscopic BHs live longer than a Hubble time and generate globally stable quantum foam mass density Λ .
- $\Lambda = 2N_{BH} m_P / L_f^3$, with L_f the size of the universe when the first BH with $t_{ev} > t_{univ}$, forms: L_f is frozen in when a global 4-space topology in the sense of Mach emerges.
- In fact: $N_{BH} = Y_{star} \beta_{BH} (\beta_c L_f^3) / \mu_{BH}$ yields $\beta_c \sim 10^{14} \text{ g cm}^{-3}$ for $Y_{star} \sim 10^{-2}$, $\beta_{BH} \sim 10^{-3}$, $\mu_{BH} \sim 3M_o$, $N_{BH} \sim 10^{19}$ today = a global density that matter experiences gravitationally
 - = a typical neutron star density...!

Dark Energy

- Cosmological observations suggest an accelerated expansion of the universe, usually attributed to some form of vacuum energy Λ : Einstein's cosmological constant in the form of dark energy (Riess ea 98, Perlmutter ea 98), with $\rho_0 \sim 10^{-29}$ g cm⁻³.
- About $N_{BH} \sim 10^{19}$ today, in the observable universe.
- Topological induction yields dark energy that follows the number of macroscopic BHs in the universe.
 Induced Planckian BHs require an increase in 4-volume for their embedding: L_f≈2x10¹⁴ cm from ρ₀ and N_{BH}.
- Observed star/BH formation history of universe yields: Λ(z)/Λ(0)~(1+z)^{-0.36}, z<1; a ~30% decline: w ≈ -1.1, not constant, consistent with observations. In fact, w = -1.08 ± 6% (Hinshaw ea 13; Planck: Ade ea 15).

Fig. 1.— Redshift evolution of Λ derived from the type II SN rate data of Hopkins & Beacom (2006). The shading represents the observational uncertainty in deriving the type II SN rate.

Summary

- Observer-observed mimicry, implicit in Einstein's elevator thought experiment, expresses what equivalent yet distinct information is needed for gravity.
- This mimicry principle applied to black holes leads to the induction of Wheeler's quantum foam by the **number** of macroscopic BHs.

Thank You! 1.0 Salpeter 0.8 (0)//(Z)/ 0.6 0.4 0.2 0.0 2 346 0 Redshift (z)

Fig. 1.— Redshift evolution of Λ derived from the type II SN rate data of Hopkins & Beacom (2006). The shading represents the observational uncertainty in deriving the type II SN rate.

The Mimicry Principle:

Any observer can mimic any observed's identity in terms of locally causal events, but only through the **induction** of four-space histories that are always globally distinct.

Multiply Connected Space-Time

- Topologically distinct paths, under homeomorphisms, between any two points:
- Use loops in T³, S¹xS² (and S³ as glue)

Build a lattice of three-tori, with spacing L_{Planck}, to travel through 4D space-time as an expression of the superposition principle and attach Wheeler's handles: Quantum paths that connect points are then globally identified through non-contractible loops.

Such a lattice of three-tori yields Feynman's path integral

- A particle/wave travels along many paths as an expression of the **superposition principle:** connect any A to any B.
- ∫ paths e^{iS} leads to a semi-classical world line and a large scale limit for GR. But, how to distinguish paths on L_P?

Topology of Quantum Space-Time

Observers cannot tell paths apart **locally**!

Summary

- Observer-observed mimicry, implicit in Einstein's elevator thought experiment, expresses what equivalent yet distinct information is needed for gravity.
- The mimicry principle applied to black holes leads to the induction of Wheeler's quantum foam by the **number** of macroscopic BHs, i.e., a testable form of dark energy.
- Inflation driven by induced mini BHs: n≥55 e-foldings, n~In(L_f/L_{Planck})^{1/2} ~InN_{BH}^{1/6}.
- Further scrutiny of the lattice of three-tori leads to: quantum fluctuations with n_s=1-r ≈ ln(7)/n = 0.96.